Design and Construction of a Mobile Phone Based Home and Office Appliances Remote Switching System
Kingsley Okeoghene Enalume,
Emmanuel Okhueleigbe
Issue:
Volume 5, Issue 1, January 2017
Pages:
1-6
Received:
30 September 2016
Accepted:
11 October 2016
Published:
6 February 2017
Abstract: This paper presents a method for users to control their home and office appliances remotely using a mobile phone. This is borne out of the desire to minimise accidents and prevent damage to electrical appliances as a result of not switching off electrical appliances such as pressing iron, electric heater, etc, which can result in fire incidence and damage. The system provides the ease of turning on/off electrical appliances with its attendant safety. The access control is achieved by sending a DTMF code from the user mobile phone to the device mobile phone receiver. The received DTMF code is then decoded by the DTMF decoder which interfaces with a PIC Microcontroller to process the signal and control the appliance with the aid of a relay. The switching system presented in this paper will enable the switching of electrical appliances with AC load of 220V±5% supply from a mobile phone by simply issuing a command through the phone’s keypad to the system. This saves time used in switching ON or OFF the electrical appliances manually since the electrical appliance can be controlled from this remote system.
Abstract: This paper presents a method for users to control their home and office appliances remotely using a mobile phone. This is borne out of the desire to minimise accidents and prevent damage to electrical appliances as a result of not switching off electrical appliances such as pressing iron, electric heater, etc, which can result in fire incidence and...
Show More
Embedded System Based Radio Detection and Ranging (RADAR) System Using Arduino and Ultra-Sonic Sensor
Ahman Emmanuel Onoja,
Abdusalaam Maryam Oluwadamilola,
Lukman Adewale AJAO
Issue:
Volume 5, Issue 1, January 2017
Pages:
7-12
Received:
30 June 2017
Accepted:
1 August 2017
Published:
28 November 2017
Abstract: The applications of the radio detection and ranging (RADAR) systems in military installations as well as scientific and commercial facilities is powered by the ability of the RADAR systems to use electro-magnetic waves to determine the speed, range, altitude or direction of objects, either fixed or in motion. In the years since RADAR systems came into prominence, incalculable developments have occurred. Some of these are in the fields of navigation and positioning, target detection and tracking, energy optimization, and other applications. In this research, existing radar technologies are examined and an Arduino based RADAR system is proposed. The advantage of this is to drastically reduce power consumption and allow the designers to have access to a wide range of online communities of Arduino programmers and open source reusable code. The system consists of an ultra-sonic sensor, an Arduino micro-controller, a servo motor and a java application for mapping the electro-magnetic waves. A prototype system is built by connecting the ultra-sonic sensors to the Arduino micro-controller’s digital input/output pins and the servo motor also connected to the digital input/output pins. Both the ulta-sonic sensor and the servo motor are then clipped together so that as the servo motor sweeps from right to left through an angle of 1800 the servo will rotate alongside it.
Abstract: The applications of the radio detection and ranging (RADAR) systems in military installations as well as scientific and commercial facilities is powered by the ability of the RADAR systems to use electro-magnetic waves to determine the speed, range, altitude or direction of objects, either fixed or in motion. In the years since RADAR systems came i...
Show More